
1

1

Principles of Network Security 

Protocols

Radia Perlman

radia.perlman@sun.com

Charlie Kaufman

charliek@microsoft.com

2

What is this tutorial about?

• What network protocol designers need to 

know about security protocols

• Putting some “hot buzzwords” in 

perspective

• Going beyond details of standards and math 

to what “really matters”



2

3

First, what do we mean by 

“security”?

4

First, what do we mean by 

“security”?

• Limit data disclosure just to intended 

recipients?



3

5

First, what do we mean by 

“security”?

• Limit data disclosure just to intended 

recipients?

– Monitor traffic to find terrorists?

– Cut down on spam and malware?

6

First, what do we mean by 

“security”?

• Authenticate the source?



4

7

First, what do we mean by 

“security”?

• Authenticate the source?

– allow anonymity for whistleblowers, spies?

8

First, what do we mean by 

“security”?

• DRM?



5

9

What are the threats?

• Environment-dependent

• Read data?

• Modify data?

• Generate data?

• Infect machines?

10

Some basic terms

• Authentication: “Who are you?”

• Authorization: “Should you be doing that?”

• DOS: denial of service

• DDOS: distributed denial of service

• Integrity protection: a checksum on the data 

that requires knowledge of a secret to 

generate (and maybe to verify)



6

11

Some Examples to Motivate the 

Problems

• Sharing files between users

– File store must authenticate users

– File store must know who is authorized to read 

and/or update the files

– Information must be protected from disclosure 

and modification on the wire

– Users must know it’s the genuine file store (so 

as not to give away secrets or read bad data) 

12

Examples cont’d

• Electronic Mail

– Send private messages

– Know who sent a message (and that it hasn’t 

been modified)

– Non-repudiation - ability to forward in a way 

that the new recipient can know the original 

sender

– Anonymity



7

13

Examples cont’d

• Electronic Commerce

– Pay for things without giving away my credit 

card number

• to an eavesdropper

• or phony merchant

– Buy anonymously

– Merchant wants to be able to prove to 3rd party 

that I placed the order

14

Cryptography

• Crypto

– secret key

– public key

– cryptographic hashes

• Used for

– authentication, integrity protection, encryption



8

15

What you really need to know

• The math (of some algorithms) is cool, for 

its own sake

• But you need to know the functionality

16

What you really need to know

• The math (of some algorithms) is cool, for 

its own sake

• But you need to know the functionality

– e.g., implications of basing integrity checks, or 

authentication, on public vs secret keys



9

17

What you really need to know

• The math (of some algorithms) is cool, for 

its own sake

• But you need to know the functionality

– e.g., implications of basing integrity checks, or 

authentication, on public vs secret keys

• And the “hard stuff” not in the standards

18

Secret Key/Symmetric Crypto

• Two operations (“encrypt”, “decrypt”) 

which are inverses of each other. Like 

multiplication/division

• One parameter (“the key”)

• Even the person who designed the 

algorithm can’t break it without the key 

(unless they diabolically designed it with a 

trap door)

• Ideally, a different key for each pair of users



10

19

Secret key encryption

plaintext

key

encrypt ciphertext

ciphertext

key

decrypt ciphertext

20

Secret Key Integrity Protection

Generate

MAC

Verify

MAC
MAC

Plaintext

Yes/No

Key Key



11

21

Challenge / Response 

Authentication

Alice (knows K) Bob (knows K)

I’m Alice Pick Random R

Encrypt R using K

(getting C)

If you’re Alice, decrypt C

R

22

Secret key crypto, Alice and Bob 

share secret S

• encrypt=f(S, plaintext)=ciphertext

• decrypt=f(S, ciphertext)=plaintext

• authentication: send f(S, challenge)

• integrity check: f(S, msg)=X

• verify integrity check: f(S, X, msg)



12

23

A Cute Observation

• Security depends on limited computation 
resources of the bad guys

• (Can brute-force search the keys)
– assuming the computer can recognize plausible 

plaintext

• A good crypto algo is linear for “good guys” and 
exponential for “bad guys”

• Even 64 bits is daunting to search through

• Faster computers work to the benefit of the good 
guys!

24

Token Cards

• should be 2-factor (card+PIN)

• challenge/response (need keyboard)

• time-based

– time skew (can adjust time and rate each time)

– if no keyboard, PIN can be sent with value

• sequence based

– issue if mess up several times

– same PIN issues if no keyboard



13

25

Public Key/Asymmetric Crypto

• Two keys per user, keys are inverses of 

each other (as if nobody ever invented 

division)

– public key “e” you tell to the world

– private key “d” you keep private

• Yes it’s magic. Why can’t you derive “d”

from “e”?

• and if it’s hard, where did (e,d) come from?

26

Digital Signatures

• One of the best features of public key

• An integrity check

– calculated as f(priv key, data)

– verified as f(public key, data, signature)

• Verifiers don’t need to know secret

• vs. secret key, where integrity check is 

generated and verified with same key, so 

verifiers can forge data



14

27

Public Key Encryption for 

Privacy

Plaintext Ciphertext Plaintext

Public Key Private Key

28

Public Key Integrity Protection

Generate

Signature

Verify

Signature
Signature

Plaintext

Yes/No

Private Key Public Key



15

29

Public Key Authentication

Alice (knows A’s

private key)

Bob (knows A’s

public key)

I’m Alice Pick Random R

Encrypt R using

A’s public key

(getting C)
If you’re Alice, decrypt C

R

Decrypt C

30

Cryptographic Hashes

• Invented because public key is slow

• Slow to sign a huge msg using a private key

• Cryptographic hash

– fixed size (e.g., 160 bits)

– But no collisions! (at least we’ll never find one)

• So sign the hash, not the actual msg

• If you sign a msg, you’re signing all msgs 

with that hash!



16

31

Don’t try this at home

• No reason (except for the VÜçÑàÉzÜtÑ{ç Zâ|Äw VÜçÑàÉzÜtÑ{ç Zâ|Äw VÜçÑàÉzÜtÑ{ç Zâ|Äw VÜçÑàÉzÜtÑ{ç Zâ|Äw ) 
to invent new cryptographic algorithms

• Even if you could invent a better (faster, 

more secure) one, nobody would believe it

• Use a well-known, well-reviewed standard

32

Uses of hashes

• Public key signature of msg is actually 

signature on h(msg)

• Shorthand for a public key when doing 

configuration

• Keyed hash: h(msg, key) = integrity check 

on msg



17

33

Aren’t hashes “broken”?

• Terminology for 3 attacks (in order of 

difficulty, from easiest to hardest)

– collision: finding two things with same hash

– 2nd preimage: finding something with the same 

hash as a given thing

– 1st preimage: given a hash value, finding 

something with that hash

34

What’s been done

• Collisions with all of the older standards

• 2nd preimage with some

• 1st preimage with MD4

• Collisions should take 2n/2, and preimages should 

be 2n: hashes considered “weak” if attacks in 

fewer than that (e.g., SHA-1 in 251)

• Note: these attacks (mostly) don’t affect “keyed 

hash”, certainly not in practice (today)



18

35

Current hashes

• SHA-256, SHA-384, and SHA-512 still 

OK, but “suspect”

• NIST is running a competition

• Real lesson: crypto-agility

36

Real vulnerabilities tend to be more 

mundane



19

37

Real vulnerabilities tend to be more 

mundane

• C language: null terminated strings

• Other languages: counted strings

38

Real vulnerabilities tend to be more 

mundane

• C language: null terminated strings

• Other languages: counted strings

• CA issues a cert to badguys.com for any 

name that ends in .badguys.com

• Browser alerts if cert does not not match the 

URL (say bigbank.com)



20

39

Real vulnerabilities tend to be more 

mundane

• C language: null terminated strings

• Other languages: counted strings

• CA issues a cert to badguys.com for any 

name that ends in .badguys.com

• Browser alerts if cert does not not match the 

URL (say bigbank.com)

• certificate for bigbank.com\0.badguys.com

40

Popular Secret Key Algorithms

• DES (old standard, 56-bit key, slow)

• 3DES: fix key size but 3 times as slow

• RC4: variable length key, “stream cipher”

(generate stream from key, XOR with data)

• AES: NIST-driven standard



21

41

Popular Public Key Algorithms

• RSA: nice feature: public key operations 

can be made very fast, but private key 

operations will be slow. Patent expired.

• ECC (elliptic curve crypto): smaller keys, 

so faster than RSA (but not for public key 

ops). Some worried about patents 

42

Hybrid Encryption

Instead of:
Message

Encrypted with Alice’s Public Key

Use:

Randomly

Chosen K

Encrypted with

Alice’s Public Key

Message

Encrypted with

Secret Key K

+

Message



22

43

Hybrid Signatures

Instead of:
Message

Signed with Bob’s Private Key

Use:

Message

Message

Signed with Bob’s Private Key

Digest (Message)
Message +

44

Signed and Encrypted Message

Randomly

Chosen K

Encrypted with

Alice’s Public Key

Message

Encrypted with

Secret Key K

+

Digest (Message)
+

Signed with

Bob’s Private Key



23

45

Our Notation

Encryption: Curly brackets followed by name of key

{data}KAB

Signed info: Square brackets followed by name of key

[information]Alice

46

An elegant public key algorithm



24

47

An Intuition for Diffie-Hellman

• Allows two individuals to agree on a secret 
key, even though they can only 
communicate in public

• Alice chooses a private number and from 
that calculates a public number

• Bob does the same

• Each can use the other’s public number and 
their own private number to compute the 
same secret

• An eavesdropper can’t reproduce it

48

Why is D-H Secure?

• We assume the following is hard:

• Given g, p, and gX mod p, what is X?

• With the best known mathematical techniques, this 

is somewhat harder than factoring a composite of 

the same magnitude as p

• Subtlety: they haven’t proven that the algorithms 

are as hard to break as the underlying problem



25

49

Diffie-Hellman
Alice Bob

choose random A choose random B

gA mod p

gB mod p

agree on g,p

compute (gB mod p) A
compute (gA mod p)B

agree on gAB mod p

50

Man in the Middle

Alice Bob

gA mod p

Trudy

agree on gAT mod p

gT mod p

gT mod p

gB mod p

agree on gTB mod p

{data}gAT mod p

{data}gAT mod p

{data}gTB mod p

{data}gTB mod p



26

51

Signed Diffie-Hellman

(Avoiding Man in the Middle)
Alice Bob

choose random A choose random B

[gA mod p] signed with Alice’s Private Key

[gB mod p] signed with Bob’s Private Key

verify Alice’s signature

agree on gAB mod p

verify Bob’s signature

52

If you have keys, why do D-H?

• “Perfect Forward Secrecy” (PFS)

• Prevents me from decrypting a conversation 

even if I break into both parties after it ends 

(or if private key is escrowed)



27

53

Example non-PFS (like SSL)

Alice Bob

{K}Bob

protect conversation using K

54

PFS without Diffie-Hellman

Alice Bob

{K}P

protect conversation using K

invent new RSA pair

for this conversation[Use public key P]Bob



28

55

Encrypting Large Messages

• The basic algorithms encrypt a fixed size block

• Obvious solution is to encrypt a block at a time. 
This is called Electronic Code Book (ECB)

• Repeated plaintext blocks yield repeated 
ciphertext blocks

• Other modes “chain” to avoid this (CBC, CFB, 
OFB)

• Encryption does not guarantee integrity!

56

CBC (Cipher Block Chaining)

IV M1 M2 M3 M4

IV C1 C2 C3 C4

E E E E



29

57

CBC Decryption

IV C1 C2 C3 C4

IV M1 M2 M3 M4

D D D D

58

New topic: Key Distribution



30

59

Key Distribution - Secret Keys

• Could configure n2 keys

• Instead use Key Distribution Center (KDC)

– Everyone has one key

– The KDC knows them all

– The KDC assigns a key to any pair who need to 

talk

• This is basically Kerberos

60

KDC

Alice/Ka

Bob/Kb

Carol/Kc

Ted/Kt

Fred/Kf

Alice/Ka

Bob/Kb

Carol/Kc

Ted/Kt

Fred/Kf



31

61

Key Distribution - Secret Keys

Alice KDC Bob

A wants to talk to B

Randomly choose Kab

{“B”, Kab}Ka {“A”, Kab}Kb

{Message}Kab

62

Key Distribution - Public Keys

• Certification Authority (CA) signs 

“Certificates”

• Certificate = a signed message saying “I, 

the CA, vouch that 489024729 is Radia’s 

public key”

• If everyone has a certificate, a private key, 

and the CA’s public key, they can 

authenticate



32

63

Key Distribution - Public Keys

Alice Bob

[“Alice”, key=342872]CA

Auth, encryption, etc.

[“Bob”, key=8294781]CA

64

KDC vs CA Tradeoffs

• KDC solution less secure

– Highly sensitive database (all user secrets)

– Must be on-line and accessible via the net

• complex system, probably exploitable bugs, 

attractive target

– Must be replicated for performance, availability

• each replica must be physically secured



33

65

KDC vs CA

• KDC more expensive

– big, complex, performance-sensitive, replicated

– CA glorified calculator

• can be off-line (easy to physically secure)

• OK if down for a few hours

• not performance-sensitive

• Performance

– public key slower, but avoid talking to 3rd 

party during connection setup

66

KDC vs CA Tradeoffs

• CA’s work better interrealm, because you 

don’t need connectivity to remote CA’s

• Revocation levels the playing field 

somewhat



34

67

Revocation

• What if someone steals your credit card?

– depend on expiration date?

– publish book of bad credit cards (like CRL 

mechanism …cert revocation list)

– have on-line trusted server (like OCSP …

online certificate status protocol)

68

Another approach: Identity Providers

• Evolved from “Passport”

• For authenticating users to web sites

• Instead of zillions of username/pwd at each 
site, authenticate to one: your “identity 
provider”

• With the magic of cookies and URL 
rewriting, it vouches for you at affiliated 
sites



35

69

Pluses and Minuses

• Plus:

– Works with “existing” browsers

• Minus:

– identity provider vs peer-to-peer authentication

• availability

• performance

• security

• privacy

– What if zillions of identity providers?

70

New topic: Key hierarchies



36

71

Strategies for Hierarchies

• Monopoly

• Oligarchy

• Anarchy

• Bottom-up

72

Monopoly

• Choose one universally trusted organization

• Embed their public key in everything

• Give them universal monopoly to issue 

certificates

• Make everyone get certificates from them

• Simple to understand and implement



37

73

What’s wrong with this model?

• Monopoly pricing

• Getting certificate from remote organization 

will be insecure or expensive (or both)

• That key can never be changed

• Security of the world depends on honesty 

and competence of that one organization, 

forever

74

Oligarchy of CAs

• Come configured with 80 or so trusted CA 

public keys (in form of “self-signed”

certificates!)

• Usually, can add or delete from that set

• Eliminates monopoly pricing



38

75

What’s wrong with oligarchy?

• Less secure!

– security depends on ALL configured keys

– naïve users can be tricked into using platform 

with bogus keys, or adding bogus ones (easier 

to do this than install malicious software)

– impractical for anyone to check trust anchors

• Although not monopoly, still favor certain 

organizations. Why should these be trusted?

76

Default Windows Oligarchy



39

77

Windows Idiosyncrasies

• The list you see is a subset of the real list

• New CAs are downloaded from 

WindowsUpdate “on demand”

• You can turn this feature off

• Some companies manage the trusted list for 

their enrolled systems including adding 

their own CAs

78

Anarchy

• Anyone signs certificate for anyone else

• Like configured+delegated, but user 

consciously configures starting keys

• Problems

– won’t scale (too many certs, computationally too 

difficult to find path)

– no practical way to tell if path should be trusted

– too much work and too many decisions for user



40

79

Important idea

• CA trust shouldn’t be binary: “is this CA 

trusted?”

• Instead, a CA should only be trusted for 

certain certificates

• Name-based seems to make sense (e.g., 

trusted for *.citibank.com)

80

Top Down with Name-based 

policies

• Assumes hierarchical names

• Each CA only trusted for the part of the 

namespace rooted at its name

• Easy to find appropriate chain

• This is a sensible policy that users don’t have 

to think about

• But: Still monopoly or oligopoly at top, since 

every chain starts somewhere



41

81

Bottom-Up Model

• Each arc in name tree has parent certificate (up) 

and child certificate (down)

• Name space has CA for each node

• Cross Links to connect Intranets, or to increase 

security

• Start with your public key, navigate up, cross, and 

down

• When a key changes, only the nodes that certify it 

have to do anything

82

Company designs its PKI trusting no one

abc.com

nj.abc.com ma.abc.com

alice@nj.abc.com bob@nj.abc.com carol@ma.abc.com



42

83

Cross-Certify Partner Companies

abc.com xyz.com

84

Root Service can simplify things

abc.com xyz.com

root



43

85

Notes

• You don’t have to start at your own key, 
e.g., federal PKI with “bridge” CA

• Cross certification can bypass hierarchy, for 
trust issues

• Can have multiple competing CAs at 
various points in the hierarchy

– If too many, might negotiate “which roots do I 
trust” with other side

86

Advantages of Bottom-Up

• For intranet, no need for outside 

organization

• Security within your organization is 

controlled by your organization

• No single compromised key requires 

massive reconfiguration

• Easy configuration: public key you start 

with is your own



44

87

Public Keys without a PKI

88

How do we deal with people?

Hi, I’m Bob!My public key is
73287492836437



45

89

Some of us tried…

90

eMail

• I could include my public key with every 

message (and sign the message)

• Your mailer reports it to you only if 

someone’s public key ever changes

• I encrypt messages if I know the recipient’s 

public key



46

91

Web Accounts

• When I set up an account on a web site, 

instead of supplying a username/password I 

provide a public key

• Future visits use the public key to identify 

and authenticate me

92

Revocation

• What if you lose your key, or it is stolen?

• Now hundreds of merchants have stored 

your old key



47

93

Revocation

• What if you lose your key, or it is stolen?

• Now hundreds of merchants have stored 

your old key

• Idea: Revocation service

94

Enrolling

Client SP

Depend on current SSL-PKI

“create account”

Stuff I want from you, my PK

Wallet
{addresses}

{credit cards}

{telephone numbers}

Passport number

Per site info (its public key, your key pair for that site)

My public key

URL of my revocation server



48

95

Revocation service

• SP learns user’s revocation server along with the 
user’s public key

• SP can “enroll” with that revocation service, to be 
notified in case of revocation

• Or SP can check periodically

• User has to have some sort of out-of-band 
mechanism to authenticate to revocation service 
and revoke the key

• Perhaps allow revocation service to inform of the 
new key as well, though that makes revocation 
service more trusted

96

Other potential issues

• Authenticated attributes (e.g., qualified for 

AAA discount, age > 21, member of group 

allowed to do free IEEE library searches...)

• Web of trust between organizations

• Neither of those are harder with IDPs than 

with certificates



49

97

So, two examples of easy PKI

• Within an enterprise: one CA

• On the web: “key continuity”; don’t need 

certificates or CAs at all

98

Cryptographic Handshakes



50

99

Cryptographic Handshakes

• Once keys are known to two parties, need a 

handshake to authenticate

• Goals:

– Mutual authentication

– Immune from replay and other attacks

– Minimize number of messages

– Establish a session key as a side effect

100

Challenge/Response vs

Timestamp

Alice Bob

I’m Alice

R

{R}K
compare:

vs:
I’m Alice, {timestamp}K



51

101

Challenge/Response vs

Timestamp

• Second protocol saves messages, fits more 

easily into existing protocols that expect 

passwords

• First protocol does not require synchonized

clocks

• Second protocol must keep a list of 

unexpired timestamps to avoid replay

102

Pitfalls with Public Key

Alice Bob

I’m Alice

R

R signed with private key

This might trick Alice into signing something, or

possibly decrypting something



52

103

Eavesdropping/Server Database 

Stealing

• pwd-in-clear, if server stores h(pwd), 

protects against database stealing, but 

vulnerable to eavesdropping

• Standard challenge/response, using 

K=h(pwd), foils eavesdropping but K is 

pwd-equivalent so server database 

vulnerable

• Lamport’s hash solves both

104

Salt

• Protects a database of hashed passwords

• Salt is non-secret, different for each user

• Store hash(pwd, salt)

• Users with same pwd have different hashes

• Prevents intruder from computing hash of a 

dictionary, and comparing against all users



53

105

Lamport’s Hash (S/Key)

Bob’s database holds:

n, salt, hashn+1(pwd | salt)

Alice Bob

I’m Alice

n, salt

hashn (pwd | salt)

106

Lamport’s Hash (S/Key)

• Offers protection from eavesdropping and 

server database reading without public key 

cryptography

• No mutual authentication

• Only finitely many logins

• Small n attack: someone impersonates Bob



54

107

Mutual Authentication

Alice Bob
I’m Alice

R1

{R2}K

R2

{R1}K

108

More Efficient Mutual 

Authentication

Alice Bob
I’m Alice, R2

R1, {R2}K

{R1}K



55

109

Reflection Attack

Trudy Bob
I’m Alice, R2

R1, {R2}K

start a second

parallel connection

I’m Alice, R1

R3, {R1}K

complete the first {R1}K

110

Timestamp Based Mutual 

Authentication

Alice Bob

I’m Alice, {timestamp}K

I’m Bob, {timestamp}K

Two messages instead of three

Must assure Bob’s timestamp is different



56

111

Crypto negotiation

• These days protocols need to be “crypto-

agile” (negotiate which algorithms to use 

for encryption, hash, etc.)

• Usually one side says “here is a list, in 

preference order, of what I can do”

• Other side chooses

112

Security issue

• By definition, negotiation messages can’t be 

integrity-protected

• So an attacker can remove the secure 

choices; force them to talk with insecure 

algorithms



57

113

Handshake techniques

• Extended sequence numbers

• Use Diffie-Hellman, or some other 

technique, to ensure unique key per session

114

Some specific protocols



58

115

SSL/TLS

Client ServerInitiate Request

Server Certificate

{Session key}Server’s public key

{Data}Session key

116

Exportable Crypto

Client Server
Initiate Request

server cert, [E=ephemeral PK]server’s private key

{Session key}E

{Data}Session key



59

117

Client Auth

Client Server
Initiate Request

server cert

{Session key}, Client cert, [MD all prev msgs]client PK

{Data}Session key

118

IPsec

• Packet format for data (AH/ESP)

• Authentication handshake/establish key 

(IKE)



60

119

ESP

Encapsulating Security Payload
IP Header

ESP Header

Encrypted

Padding

MIC

Payload

Next Header = ‘50’ (ESP)

Session ID

Sequence #TCP = 6

UDP = 17

ESP = 50

IP = 4

Over ESP Header, Encrypted

Payload/Pad/Padlen/NXT

Encrypted

Pad Len   NXT

120

AH (Authentication Header)

IP Header Next Header = ‘51’ (AH)

AH Header

Payload

Next Len MBZ

Session ID

Sequence #

MIC

TCP = 6

UDP = 17

ESP = 50

IP = 4

AH = 51

Over “immutable” fields of IP

Header, AH Header, and Payload



61

121

General idea of IKEv2

Alice Bob
gA mod p, nonceA

{“Alice”, proof I’m Alice}gAB mod p

gB mod p, nonceB

{“Bob”, proof I’m Bob}gAB mod p

122

Random Number Pitfalls

• A surprising number of commercial and 

amateur systems have been broken by bad 

random number generators

• If you can guess the random number chosen 

for use as key, you have the key

– Seed too small

– Predictable seed (time of day)

– Bad pseudo-random number algorithm



62

123

New topic: Electronic Mail

124

Electronic Mail Security: 

What might you want?

• Privacy

• Authentication

• Integrity

• Non-repudiation

• Spam/malware defense



63

125

Distribution Lists

• Simple multi-recipient messages

• Named distribution lists

sender

dist list maintainer recp 1

recp 2

recp 3

msg

126

End-to-end Privacy

• End-to-end means the mail delivery can’t 

read or alter the message (it can fail to 

deliver it)

• All systems use public and secret keys

• {msg} secret key encrypted using random S

• {S} public key encrypted using the public 

key of each recipient



64

127

Privacy with Dist. Exploders

• Exploder trusted to see msg: can add 

additional recipients

• Exploder has key Kr

• It receives {msg}S, {S}Kr

• Need not decrypt {msg}, though it could

• Must decrypt {S} and reencrypt under each 

recipient’s key

128

Source Authentication/Integrity

• Public keys are nice! Sender’s digital 

signature works with all recipients. 

• Exploder need not modify message.

• Non-enhanced mail recipients can ignore 

signature



65

129

Mail Archives

• May want to prove mail was valid when 

received. (e.g., PO, but user has since 

declared private key compromised)

• A timestamp in the msg can be forged by 

the person who stole the key

• Even CA key could be compromised

• Solution: notary signs and dates msg, certs, 

CRLs. Must keep all those

130

Data at Rest issues

• Granularity? Whole disk? Files? Records?

• Layer of encryption: OS? Application?

• Encryption modes so can read/write chunks

• Room to put integrity check/IV for each chunk

• Ability to prevent overwriting chunk with old 

chunk

• Key recovery

• Assured delete



66

131

Assured Delete

132

Assured Delete

• If you make copies, too hard to ensure all 

copies are gone

• So we’ll invent an “ephemerizer” with time-

based public keys

• Add that lock to already-encrypted data

• But have to minimize overhead



67

133

What if ephemerizer faulty?

• Rather than relying on it to be super-robust, 

use multiple flaky ephemerizers

• If worried about it not forgetting keys, use k 

out of n scheme

134

File system with Master class keys

Class keys

S1 Jan 7, 2009

S2 Jan 8, 2009

S3 Jan 9, 2009

…

Nonvolatile storage

file

Exp 01/08/09

{K}S2

Encrypted

With K

Class keys: Secret keys

Generated by file system



68

135

Use ephemerizer to back up class 

keys

136

File system with Master class keys
Class keys

S1 Jan 7, 2009

S2 Jan 8, 2009

S3 Jan 9, 2009

…

Ephemerizer keys

P1 Jan 7, 2009

P2 Jan 8, 2009

P3 Jan 9, 2009

…

Q1 Jan 7, 2009

Q2 Jan 8, 2009

Q3 Jan 9, 2009

…

Nonvolatile storage

{S1}P1, {S1}Q1 Jan 7, 2009

{S2}P2, {S2}Q2 Jan 8, 2009

{S3}P3, {S3}Q3 Jan 9, 2009

…

file

Exp 01/08/09

{K}S2

Encrypted

With KEncrypted with G

Sysadmin secret



69

137

Protocol for requesting decryption 

from Ephemerizer

138

What we want to accomplish

Bob Ephemerizer

Please decrypt {M}Pi with key ID i

M

Has {M}Pi



70

139

What we want to accomplish

Bob Ephemerizer

Please decrypt {M}Pi with key ID i

M

Has {M}Pi

But we don’t want the Ephemerizer to see M

140

We’ll create “blind decryption”

• Same basic idea as blind signatures

• Bob wants Ephemerizer to decrypt {M}Pi

with its private key #i

• … Without seeing what it is decrypting

• Bob encrypts (blinds) with another function, 

which commutes with Ephemerizer’s crypto

• Then unblinds



71

141

Blind Decryption

Bob Ephemerizer

Please decrypt { {M}Pi } B with key ID i

{M}B

Has {M}Pi

File system applies U to get M

Ephemerizer only sees {M}B

Invents (B,U)

142

Non-math fans can take a nap



72

143

For you math fans…

144

Blind Decryption with RSA, 

BD’s RSA PK=(e,n), msg=M

Alice BD

wants to decrypt Me mod n

chooses R, computes Re

Me Re

applies (d,n)

MedRed

M R

divides by R to get plaintext M



73

145

Blind encryption with D-H public 

key gx mod p

• BD has Diffie-Hellman key (gx mod p)

• Alice encrypts M with BD’s public key:

– Alice chooses y, raises g and BD’s PK to y

• (gy) and (gx)y

– Encrypts M with gxy mod p: {M}gxy

– Saves {M}gxy and (gy)

– Discards y and gxy

146

Blind Decryption:

BD’s PK=(gx mod p)
Alice BD

gyz mod p

gxyz mod p (BD applies priv x)

knows: gy mod p, {M}gxy mod p

chooses z, z-1, computes (gy)z

(gxyz mod p)z-1

decrypts {M}gxy mod p with gxy mod p 



74

147

Properties of our protocol

• Ephemerizer gains no knowledge when it is 

asked to do a decryption

• Protocol is really efficient: one IP packet 

request, one IP packet response

• No need to authenticate either side

• Decryption can even be done anonymously

148

OK, non-math fans can wake up now



75

149

Quick things if time

• IBE

• quantum

• DRM

• Why does software suck?

• TPM

150

Plug for our book

• Kaufman, Perlman, Speciner, “Network 

Security: Private Communication in a 

Public World”



76

151

SI SPY NET WORK, BIG FEDJAW IOG LINK KYXOGY

152

Conclusions

• Until a few years ago, you could connect to the 

Internet and be in contact with hundreds of 

millions of other nodes, without giving even a 

thought to security. The Internet in the ’90’s was 

like sex in the ’60’s. It was great while it lasted, 

but it was inherently unhealthy and was destined 

to end badly. I’m just really glad I didn’t miss out 

again this time.  —Charlie Kaufman


